неравенство Гельдера

неравенство Гельдера
нобаробарии Гелдер. матем.

Краткий русско-таджикский терминологический словарь по точным, естественным и техническим наукам. . 2013.

Игры ⚽ Нужна курсовая?

Смотреть что такое "неравенство Гельдера" в других словарях:

  • Неравенство Гельдера — Неравенство Гёльдера в функциональном анализе и смежных дисциплинах  это фундаментальное свойство пространств Lp. Содержание 1 Формулировка 2 Частные случаи 2.1 Неравен …   Википедия

  • Неравенство Гёльдера — в функциональном анализе и смежных дисциплинах  это фундаментальное свойство пространств . Содержание 1 Формулировка 2 Доказательство …   Википедия

  • Неравенства — I Неравенства (математические)         соотношения между числами или величинами, указывающие, какие из них больше других. Для обозначения Н. употребляется знак 1 и 1 < 2 выражают одно и то же, а именно: 2 больше 1, или 1 меньше 2. Иногда… …   Большая советская энциклопедия

  • Неравенства (матем.) — Неравенства (математические), соотношения между числами или величинами, указывающие, какие из них больше других. Для обозначения Н. употребляется знак <, обращенный остриём к меньшему числу. Так, соотношения 2 > 1 и 1 < 2 выражают одно и …   Большая советская энциклопедия

  • ПРИБЛИЖЕНИЕ ФУНКЦИЙ КОМПЛЕКСНОГО ПЕРЕМЕННОГО — раздел комплексного анализа, изучающий вопросы приближенного представления (аппроксимации) функций комплексного переменного посредством аналитич. ций специальных классов. Основными в теории П. ф. к. п. являются задачи о возможности приближения,… …   Математическая энциклопедия

  • Ряды Фурье — Ряд Фурье  представление произвольной функции f с периодом τ в виде ряда Этот ряд может быть также переписан в виде . где Ak  амплитуда k го гармонического колебания (функции cos),   кру …   Википедия

  • Фурье ряд — Ряд Фурье  представление произвольной функции f с периодом τ в виде ряда Этот ряд может быть также переписан в виде . где Ak  амплитуда k го гармонического колебания (функции cos),   кру …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»